GRPO
OpenAI没做到,DeepSeek搞定了!开源引爆推理革命
DeepSeek-R1引爆了LLM推理革命。 至今,过去一百多天了,引发了持续复制DeepSeek-R1的热潮。 DeepSeek-R1的秘籍在于强化学习微调算法:群体相对策略优化(Group Relative Policy Optimization,GRPO)。
5/26/2025 4:00:00 AM
新智元
基于 DeepSeek GRPO 的 1.5B Rust 代码生成模型训练实战
群组相对策略优化(Group Relative Policy Optimization,GRPO)已被证明是一种有效的算法,可用于训练大语言模型(LLMs),使其具备推理能力并在基准测试中持续提升性能表现。 DeepSeek-R1 展示了如何通过监督式微调(Supervised Fine-Tuning)与 GRPO 技术的结合,引导模型达到与 OpenAI 的 o1 等顶尖模型相竞争的水平。 为了进一步探索其实践应用,我们尝试将这些技术应用于现实场景中。
4/7/2025 2:25:00 AM
机器学习|从0开发大模型之DeepSeek的GRPO
DeepSeek-R1的发布为国产大模型争光了(太强了),不过 GRPO 算法源自 DeepSeekMath 7B 模型,该模型在 MATH 基准测试中取得了优异成绩,论文发表于2024年2月份:,以下是该论文的摘要原文:复制翻译如下:复制对比数据1、什么是GRPOGRPO 是一种在线学习算法,核心思想是通过组内相对奖励来估计基线,从而避免使用额外的价值函数模型。 通过在训练期间使用受训模型自身生成的数据来迭代改进,GRPO 旨在最大化生成补全的优势,同时确保模型保持接近参考策略,下图是论文中的算法流程图:GRPOGRPO 是 PPO (Proximal Policy Optimization,近端策略优化,是一种强化学习算法,由OpenAI于2017年提出,旨在解决策略梯度方法中的训练不稳定问题) 的变体,主要区别是:GRPO 省略 value function modelGRPO 奖励计算,改成了一个 q 生成多个 r,然后 reward 打分GRPO算法流程:采样一组输出并计算每个输出的奖励对组内奖励进行归一化处理使用归一化后的奖励计算优势函数通过最大化目标函数更新策略模型迭代训练,逐步优化策略模型论文中的伪代码2、奖励设计huggingface 库提供 GRPOTrainer 可以直接使用 GRPO 训练,参数包括定义奖励模型和函数。 2.1 奖励模型复制这里的 reward_funcs 参数可以传入奖励模型。
4/3/2025 3:40:41 PM
周末程序猿
GRPO在《时空谜题》中击败o1、o3-mini和R1
近日,海外大模型产品平台 OpenPipe 上发布了一项研究,阐述其如何通过 GRPO 在重度推理游戏《时空谜题》中超越R1、o1、o3-mini 等模型。 研究作者分别为来自 Ender Research 的强化学习研究员 Brad Hilton 和 OpenPipe 的创始人 Kyle Corbitt。 他们的研究表示,他们不仅将模型与 Sonnet 3.7 的差距缩小至个位百分比,同时实现超过100倍的推理成本优化。
3/27/2025 4:19:00 PM
洪雨欣
VLM-R1引领视觉语言模型新纪元 多模态AI迎来新突破
近日,VLM-R1项目的成功推出为这一领域带来了新的曙光。 该项目是 DeepSeek 团队的 R1方法在视觉语言模型中的成功迁移,意味着 AI 对视觉内容的理解将进入一个全新的阶段。 VLM-R1的灵感源自于去年 DeepSeek 开源的 R1方法,该方法利用了 GRPO(Generative Reward Processing Optimization)强化学习技术,在纯文本处理上取得了优异的表现。
2/20/2025 4:44:00 PM
AI在线
DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解
强化学习(Reinforcement Learning, RL)已成为提升大型语言模型(Large Language Models, LLMs)推理能力的重要技术手段,特别是在需要复杂推理的任务中。 DeepSeek 团队在 DeepSeek-Math [2] 和 DeepSeek-R1 [3] 模型中的突破性成果,充分展示了强化学习在增强语言模型数学推理和问题解决能力方面的巨大潜力。 这些成果的取得源于一种创新性的强化学习方法——群组相对策略优化(Group Relative Policy Optimization, GRPO)。
2/17/2025 10:40:20 AM
佚名
DeepSeek 用的 GRPO 占用大量内存?有人给出了些破解方法
自 DeepSeek-R1 发布以来,群组相对策略优化(GRPO)因其有效性和易于训练而成为大型语言模型强化学习的热门话题。 R1 论文展示了如何使用 GRPO 从遵循 LLM(DeepSeek-v3)的基本指令转变为推理模型(DeepSeek-R1)。 GRPO 是一种在线学习算法(online learning algorithm),它通过使用训练过程中由训练模型自身生成的数据来进行迭代改进。
2/7/2025 1:45:58 PM
机器之心
- 1
资讯热榜
苹果发布全新Xcode 26开发者工具:内置ChatGPT先进AI功能
DeepSeek前高管秘密创业,新AI Agent项目已获顶级VC押注
那个男人回来了!Ilya现身多伦多大学毕业典礼:AI 像是用数字方式复制出来的大脑!不管你愿不愿意,AI都将深刻影响你的一生!
支持MCP!开源智能体开发框架 Rowboat:打造你的智能助手只需几分钟
ChatGPT 语音功能升级,实时翻译对话更自然流畅
肝了30小时,Flux Kontext是我用过最稳、最能干活的AI图像模型!
谷歌 Gemini 应用月下载量超越 ChatGPT,用户活跃度仍显不足
长文本理解新王者?Gemini2.5Pro 击败 o3领跑 Fiction.Live 基准测试
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
数据
谷歌
机器人
大模型
Midjourney
用户
智能
开源
微软
GPT
学习
Meta
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
代码
英伟达
Anthropic
芯片
生成式
开发者
蛋白质
腾讯
神经网络
研究
3D
生成
训练
苹果
计算
智能体
Sora
机器学习
AI设计
AI for Science
Claude
GPU
AI视频
人形机器人
华为
搜索
场景
百度
大语言模型
xAI
预测
伟达
深度学习
Transformer
字节跳动
Agent
模态
具身智能
神器推荐
LLaMA
文本
视觉
Copilot
算力
工具
LLM
驾驶
API
大型语言模型
应用
RAG
亚马逊