Redis
DeepSeek R1 简易指南:架构、本地部署和硬件要求
DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。 该研究突破性地采用强化学习(Reinforcement Learning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。 技术架构深度解析模型体系:DeepSeek-R1系列包含两大核心成员:DeepSeek-R1-Zero参数规模:6710亿(MoE架构,每个token激活370亿参数)训练特点:完全基于强化学习的端到端训练核心优势:展现出自我验证、长链推理等涌现能力典型表现:AIME 2024基准测试71%准确率DeepSeek-R1参数规模:与Zero版保持相同体量训练创新:多阶段混合训练策略核心改进:监督微调冷启动 强化学习优化性能提升:AIME 2024准确率提升至79.8%训练方法论对比强化学习与主要依赖监督学习的传统模型不同,DeepSeek-R1广泛使用了RL。
2/3/2025 6:00:00 AM
dev
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
GPT
Meta
学习
图像
技术
AI创作
Gemini
论文
马斯克
Stable Diffusion
算法
英伟达
代码
Anthropic
芯片
开发者
生成式
蛋白质
腾讯
神经网络
训练
3D
研究
生成
智能体
苹果
计算
机器学习
Sora
Claude
AI设计
AI for Science
GPU
AI视频
人形机器人
搜索
华为
百度
场景
大语言模型
xAI
预测
伟达
深度学习
LLM
字节跳动
Transformer
Agent
模态
具身智能
神器推荐
工具
文本
视觉
LLaMA
算力
Copilot
驾驶
大型语言模型
API
RAG
应用
架构