迁移学习
厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂
编辑 | KX传统的材料发现依赖反复试验或偶然发现,效率低下且成本高昂。AI 在发现新型催化剂方面潜力巨大。然而,受到算法的选择,以及数据质量和数量的影响。在此,来自厦门大学、深圳大学、武汉大学、南京航空航天大学和英国利物浦大学的研究团队开发了一种迁移学习范式,结合了预训练模型、集成学习和主动学习,能够预测未被发现的钙钛矿氧化物,并增强该反应的通用性。通过筛选 16,050 种成分,鉴定和合成了 36 种新的钙钛矿氧化物,其中包括 13 种纯钙钛矿结构。Pr0.1Sr0.9Co0.5Fe0.5O3(PSCF)和 P
7/31/2024 2:18:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
模态
字节跳动
Claude
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
科技
亚马逊
智能体
DeepMind
特斯拉