迁移学习
厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂
编辑 | KX传统的材料发现依赖反复试验或偶然发现,效率低下且成本高昂。AI 在发现新型催化剂方面潜力巨大。然而,受到算法的选择,以及数据质量和数量的影响。在此,来自厦门大学、深圳大学、武汉大学、南京航空航天大学和英国利物浦大学的研究团队开发了一种迁移学习范式,结合了预训练模型、集成学习和主动学习,能够预测未被发现的钙钛矿氧化物,并增强该反应的通用性。通过筛选 16,050 种成分,鉴定和合成了 36 种新的钙钛矿氧化物,其中包括 13 种纯钙钛矿结构。Pr0.1Sr0.9Co0.5Fe0.5O3(PSCF)和 P
7/31/2024 2:18:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
论文
英伟达
Anthropic
代码
训练
算法
Stable Diffusion
芯片
蛋白质
开发者
LLM
腾讯
生成式
Claude
苹果
AI新词
Agent
神经网络
AI for Science
3D
机器学习
研究
生成
xAI
人形机器人
AI视频
计算
Sora
GPU
AI设计
百度
华为
工具
大语言模型
搜索
具身智能
场景
RAG
字节跳动
大型语言模型
深度学习
预测
伟达
视觉
Transformer
视频生成
AGI
架构
神器推荐
亚马逊
Copilot
DeepMind
应用
安全