RAG
大模型应用的能力分级
对大模型应用的能力分级就像给学生打分一样,能让我们更清楚它的本事有多大。 能力分级能帮我们设定目标,知道AI现在能干什么,未来还要学什么。 有了统一的分级方式,大家就能公平比较不同AI的水平,推动技术进步。
4/2/2025 1:25:00 AM
曹洪伟
RAG检索全攻略:Embedding与Rerank模型的终极指南
在构建基于检索增强生成(RAG)的系统时,Embedding Model和Rerank Model扮演着至关重要的角色。 比如你正在搭建一个智能搜索引擎,Embedding Model就像是帮你快速找到相关书籍的“图书管理员”,而Rerank Model则像是一位经验丰富的“资深书评人”,负责从一堆书里精准挑选出最符合你需求的那几本。 两者配合,就像一对完美搭档,确保RAG系统既能找到大量信息,又能精准提炼出最关键的内容。
3/26/2025 11:05:13 AM
三种RAG部署方案:自购GPU硬件 vs 大模型一体机 vs 云端GPU
春节以后这一个半月,算了下我前后也做了 20 的企业知识库落地咨询,其中无论是线上还是线下,被问到最多的一个问题是:要快速落地本地部署的知识库,应该购买什么硬件? 要回答这个问题,其实需要明确很多前置定语,自购 GPU 硬件、大模型一体机、以及选择云端 GPU 都有各自适用的情形。 这篇试图说清楚三种部署方式的主要特点对比,并在文末给些选择建议参考。
3/24/2025 1:17:11 PM
韦东东
RAG(五)BGE-M3,最流行的开源text embedding模型
项目地址: embedding? Text Embedding 是一种将文本数据映射到高维向量空间的技术,这些向量能够捕捉文本的语义信息。 通过将文本嵌入到向量空间中,我们可以利用向量之间的距离或相似性来衡量文本之间的语义相关性。
3/21/2025 7:00:00 AM
Glodma
RAG(三)GraphRAG进阶:GraphReader-- 基于图的Agent,让大模型“读懂”长文本
上一篇论文介绍了GraphRAG,今天来看一篇算是其进阶版的方法--GraphReader。 对于其研究动机,简单来说,LLMs具有强大的规划和反思能力,但在解决复杂任务时,如函数调用或知识图谱问答(KGQA),以及面对需要多次推理步骤的问题时,仍然面临困难。 特别是当涉及到长文本或多文档的处理时,现有的方法往往难以充分利用这些模型的能力来捕捉全局信息,并有效地进行决策。
3/13/2025 12:24:34 PM
Glodma
企业实施RAG过程中:常见误解与澄清,内含项目升级预告
春节之后的一个月的时间内,微信和小红书上数了下大概有 150 多个过来咨询 RAG 在企业落地的网友,一路聊下来按照对方的诉求大概分为三类,第一种是最多的就是年后返工公司领导让落地 RAG,但是一时没有头绪的过来咨询的;第二种是看过我公众号上的相关案例后,想外包给我来做具体实施的;第三种有点出乎意料的是,相关的媒体来交流行业观察的。 第一种类型也是最开始比较多的,最初我也是问啥答啥,但是大概聊了五六个之后发现情况有点不对,大部分其实是比较基础的问题,或者我认为问大模型能比问我更快扫盲的,再加上后来确实肉眼可见的人在变多,我索性和每个人说如果是咨询的话 200 块每小时(现在涨到了 500),这样就大部分人就索性不问了,虽说前后也是有十几个人很干脆的问完问题后直接发了红包,不过不得不说收费确实是个很好的互相筛选。 以上是碎碎念,言归正传,这篇给大家介绍下我目前几个项目实践踩坑过程中总结出的些经验。
3/4/2025 10:53:59 AM
韦东东
一文读懂大模型 RAG:检索、增强与生成的技术详解
大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分领域时,通用大模型往往面临专业知识不足的问题。 相对于成本昂贵的“Post-Training”或“Supervised Fine-Tuning”(监督微调,SFT),基于RAG的技术方案成为了一种更优选择。 本文笔者将从RAG所解决的问题及模拟场景入手,详细总结相关技术细节,与大家分享~一、初识:RAG所解决的问题及模拟场景1.
3/4/2025 9:10:00 AM
小喵学AI
无需联网!DeepSeek-R1+本地化RAG,打造私有智能文档助手
1、写在前面官方开源的版本除了满血的 671b 外,还有 1.5b,7b,8b,14b,32b,70b 六个蒸馏后的尺寸,笔者使用 Ollama 在电脑本地部署了 7b 的模型,在终端中测试了虽然回答没有满血版的那么惊艳,但凑活能用。 作为一款高阶模型开源,确实要 salute 一下。 不过进一步的问题是,我们面对这样的强思维链模型,除了在官网间或 Chat 一下,如何进一步的将其变成工作或生活场景的生产力工具?
2/21/2025 3:56:42 PM
韦东东
DeepSeek开源模型重塑法证审计,个人本地做RAG+微调,25年多试试
全球82亿人口,网民55.6亿,而ChatGPT坐拥3.5亿全球月活,渗透率算下来也有6%左右了。 但这还是DeepSeek-R1开源之前的故事。 1/20 开源以来,DeepSeek-R1属实又硬拉高了一大波全球 AI的渗透率,或者换句话说,是解锁了更多的应用场景。
2/21/2025 2:37:21 PM
韦东东
“RAG界的DeepSeek”开源-企业复杂私域知识理解与推理框架PIKE-RAG
PIKE-RAG框架的设计目标是提供一个灵活且可扩展的RAG系统,应对工业应用中复杂多样的任务需求。 框架的核心是通过有效的知识提取、理解和组织,以及构建连贯的推理逻辑,解决了RAG系统在工业应用中的局限性。 下面来看下PIKE-RAG框架及其实现过程,供参考。
2/17/2025 3:00:00 AM
余俊晖
使用 DeepSeek R1 和 Ollama 搭建一个 RAG 系统(包含完整代码)
你有没有想过,能不能像跟人聊天一样,直接问 PDF 文件或技术手册问题? 比如你有一本很厚的说明书,不想一页页翻,只想问它:“这个功能怎么用? ”或者“这个参数是什么意思?
2/10/2025 11:27:37 AM
wayn
基于阿里开源Qwen2.5-7B-Instruct模型进行多代理RAG开发实战
译者 | 朱先忠审校 | 重楼引言大型语言模型已经展现出令人印象深刻的能力,并且随着每一代新模型的发布,它们仍在稳步改进。 例如,聊天机器人和自动摘要器等应用程序可以直接利用LLM的语言能力,因为这些LLM只要求生成文本输出——这也是该类模型的自然设置。 此外,大型语言模型还表现出了理解和解决复杂任务的令人印象深刻的能力,但是只要它们的解决方案保持“纸上谈兵”,即纯文本形式,那么它们就需要外部人类用户代表它们行事并报告所提议操作的结果。
1/13/2025 10:55:53 AM
朱先忠
我们一起聊聊如何给AI大模型喂数据?
大家好呀,我是飞鱼。 如果我想要大模型学习我的知识,怎么给他数据呢? 数据是大模型的食物,只有喂对了,模型才能更好地学习和成长。
1/10/2025 8:06:39 AM
日常加油站
【RAG】浅看引入智能信息助理提升大模型处理复杂推理任务的潜力-AssisTRAG
AssisTRAG通过集成一个智能信息助手来提升LLMs处理复杂推理任务的能力。 该框架由两个主要组件构成:一个冻结的主语言模型和一个可训练的助手语言模型。 AssisTRAG与之前的RAG对比1.
11/26/2024 8:50:20 AM
余俊晖
没有思考过 Embedding,谈何 RAG,更不足以谈 AI大模型
今天,我们来聊聊 AI 大模型,有一个非常重要概念 "Embedding"。 你可能听说过它,也可能对它一知半解。 如果你没有深入了解过 Embedding,那你就无法真正掌握 RAG 技术,更不能掌握 AI 大模型精髓所在。
11/21/2024 3:44:21 PM
渔夫
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
开源
用户
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
预测
人形机器人
百度
苹果
伟达
Transformer
深度学习
xAI
模态
字节跳动
Claude
大语言模型
搜索
具身智能
驾驶
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
干货合集
训练
应用
大型语言模型
科技
亚马逊
DeepMind
特斯拉
智能体