RAG
AIGC、RAG、Agent、Function Call、MCP 到底啥关系?一次讲明白!
Hello,大家好,我是 Sunday。 最近很多同学特别关注 AI 相关的领域。 但是,AI 技术发展太快了,AIGC、RAG、Agent、Function Call、MCP 等等的各种热词层出不穷的。
7/22/2025 1:55:00 AM
程序员Sunday
RAG 中文本分块全攻略,这个项目让效率狂飙
在构建 Retrieval-Augmented Generation(RAG)系统时,文本分块作为关键前置环节,其质量直接影响检索精度与生成内容的相关性。 今天给大家推荐一个自己近期整理的项目 ——Awesome-Chunker,一站式聚合并复现了当下主流的文本分块技术,从经典方法到前沿算法应有尽有,助你在 RAG 开发中少走弯路! 1、项目核心价值 让分块不再是难题在 RAG 任务的探索之路上,相信不少研究者都和我一样,为寻找一个能系统提升分块质量的项目而苦恼。
7/17/2025 9:35:26 AM
Goldma
RAG系统的“聪明药”:如何用反馈回路让你的AI越用越聪明?
大家好,我是你们的AI技术侃侃而谈小能手。 今天我们来聊聊RAG(Retrieval-Augmented Generation,检索增强生成)系统的进化之路——如何让它像喝了聪明药一样,越用越聪明,越聊越懂你。 你是不是也有这样的体验?
7/1/2025 8:37:13 AM
许泽宇
百度飞桨发布文档解析利器PP-StructureV3:PDF秒变Markdown文件
近日,随着大模型与RAG技术的迅猛发展,结构化数据在智能系统中的价值愈发凸显。 在此背景下,如何将文档图像、PDF等非结构化数据精准转换为结构化数据,成为行业亟待攻克的关键难题。 针对此现状,飞桨团队凭借深厚的技术积累和对用户需求的深刻洞察,推出新一代文档解析工具——PP-StructureV3,为解决复杂文档解析难题提供了创新方案。
6/18/2025 9:01:24 AM
AI在线
基于Gemini与Qdrant构建生产级RAG管道:设计指南与代码实践
一、RAG技术的核心价值与应用场景在人工智能领域,检索增强生成(Retrieval-Augmented Generation, RAG)正成为解决大语言模型(LLM)知识更新滞后、生成内容不可追溯等问题的关键技术。 传统的微调(Fine-Tuning)方法将知识固化在模型参数中,难以应对动态领域的快速变化;而RAG通过将检索与生成解耦,实现了知识的实时更新与可追溯性,尤其适用于政策频繁变动、对准确性要求极高的场景,如医疗、法律和航空管理。 本文以构建机场智能助理为例,结合Google的Gemini多模态模型与Qdrant向量数据库,详细阐述如何设计并实现一个高可靠、可扩展的生产级RAG管道。
6/3/2025 2:55:00 AM
大模型之路
一文教你玩转 RAG 大模型应用开发
Part.1.RAG这么火,你会用吗? 自从大模型技术走向市场以来,“幻觉”现象总是对用户造成困扰,而RAG(Retrieval-Augmented Generation,检索增强生成)技术正在成为解决这一难题的利器。 国内众多科技大厂在实践RAG技术时都取得了阶段性的成果。
5/30/2025 1:00:00 AM
三笠
RAG系列:问题优化 - 意图识别&同义改写&多视角分解&补充上下文
在实际业务场景中,知识库不会只有单一领域的知识,可能会存在多个领域的知识,如果对用户问题不提前做领域区分,在对基于距离的向量数据库进行检索时,可能会检索出很多与用户问题不属于同一个领域的文档片段,这样的上下文会存在较多的噪音或者不准确的信息,从而影响最终的回答效果。 另一方面知识库中涵盖的知识表达形式也是有限的,但用户的提问方式却是千人千面的,用户遣词造句的方式以及描述问题的角度可能会与向量数据库中存储的文档片段存在差异,这就可能导致用户问题和知识库之间不能很好匹配,从而降低检索效果。 为了解决此问题,我们可以对用户问题进行查询增强,比如对用户问题进行意图识别、同义改写、多视角分解以及补充上下文,通过这几个查询增强方式来更好地匹配知识库中的文档片段,提升检索效果和回答效果。
5/27/2025 12:40:00 AM
燃哥讲AI
基于图的 RAG 方法总结(GraphRAG、 GraphReader、LightRAG、HippoRAG和KAG)
在自然语言处理领域,检索增强生成(RAG)技术通过结合外部知识库与语言模型,显著提升了模型在知识密集型任务中的表现。 近年来,基于图结构的 RAG 方法成为研究热点,通过引入知识图谱的实体关系建模能力,有效解决了传统 RAG 在多跳推理、长文本理解和全局语义捕捉中的局限性。 本文详细分析五种代表性方法:GraphRAG、GraphReader、LightRAG、HippoRAG和KAG ,从实现细节、优缺点及适用场景展开对比。
5/27/2025 12:15:00 AM
Goldma
RAG系列:基于 DeepSeek + Chroma + LangChain 开发一个简单 RAG 系统
创建 Next 项目首先,使用 npx create-next-app@latest 根据提示完成 Next 项目的创建:复制创建好项目之后,在 src/app 目录下新建 rag 目录,本次 demo 的代码都将放在这里。 知识库构建接下来,我们将构建知识库,主要目标是将准备好的 pdf 通过向量化存到向量数据库中,以便后续的检索。 由于本次 RAG 系统的开发都要依赖 LangChain 框架,所以我们先在项目中安装 LangChain 框架和核心依赖:复制文档加载LangChain 的 DocumentLoaders[1] 提供了种类丰富的文档加载器,可加载文件系统的文件也可以加载线上文件,包括 csv、docx、pdf、pptx、html、github、youtube等等。
5/22/2025 6:48:50 AM
赖祥燃
RAG与微调,大语言模型的“大脑升级”,该选哪条路?(小白科普)
最近在做项目时,我发现有些甲方对RAG和模型微调分区的不太清楚,明明大语言模型(LLM)加挂RAG就可以解决的问题,却坚持要微调,但是具体沟通后发现,其实只是不太了解二者的实际用途。 其实,Retrieval-Augmented Generation (RAG) 和微调 (Fine-Tuning) 是两种最常用的LLM的“大脑升级”技术,虽然它们都能提升模型的性能,但工作原理和适用场景却大相径庭。 今天,我就来深入聊聊这两种技术,弄清楚在不同情况下,到底该选 RAG 还是微调。
5/21/2025 3:00:00 AM
贝塔街的万事屋
深度解析大模型技术演进脉络:RAG、Agent与多模态的实战经验与未来图景
作者 | jaymie大模型作为产业变革的核心引擎。 通过RAG、Agent与多模态技术正在重塑AI与现实的交互边界。 三者协同演进,不仅攻克了数据时效性、专业适配等核心挑战,更推动行业从效率革新迈向业务重构。
5/20/2025 8:30:00 AM
腾讯技术工程
大模型应用的能力分级
对大模型应用的能力分级就像给学生打分一样,能让我们更清楚它的本事有多大。 能力分级能帮我们设定目标,知道AI现在能干什么,未来还要学什么。 有了统一的分级方式,大家就能公平比较不同AI的水平,推动技术进步。
4/2/2025 1:25:00 AM
曹洪伟
RAG检索全攻略:Embedding与Rerank模型的终极指南
在构建基于检索增强生成(RAG)的系统时,Embedding Model和Rerank Model扮演着至关重要的角色。 比如你正在搭建一个智能搜索引擎,Embedding Model就像是帮你快速找到相关书籍的“图书管理员”,而Rerank Model则像是一位经验丰富的“资深书评人”,负责从一堆书里精准挑选出最符合你需求的那几本。 两者配合,就像一对完美搭档,确保RAG系统既能找到大量信息,又能精准提炼出最关键的内容。
3/26/2025 11:05:13 AM
三种RAG部署方案:自购GPU硬件 vs 大模型一体机 vs 云端GPU
春节以后这一个半月,算了下我前后也做了 20 的企业知识库落地咨询,其中无论是线上还是线下,被问到最多的一个问题是:要快速落地本地部署的知识库,应该购买什么硬件? 要回答这个问题,其实需要明确很多前置定语,自购 GPU 硬件、大模型一体机、以及选择云端 GPU 都有各自适用的情形。 这篇试图说清楚三种部署方式的主要特点对比,并在文末给些选择建议参考。
3/24/2025 1:17:11 PM
韦东东
RAG(五)BGE-M3,最流行的开源text embedding模型
项目地址: embedding? Text Embedding 是一种将文本数据映射到高维向量空间的技术,这些向量能够捕捉文本的语义信息。 通过将文本嵌入到向量空间中,我们可以利用向量之间的距离或相似性来衡量文本之间的语义相关性。
3/21/2025 7:00:00 AM
Glodma
RAG(三)GraphRAG进阶:GraphReader-- 基于图的Agent,让大模型“读懂”长文本
上一篇论文介绍了GraphRAG,今天来看一篇算是其进阶版的方法--GraphReader。 对于其研究动机,简单来说,LLMs具有强大的规划和反思能力,但在解决复杂任务时,如函数调用或知识图谱问答(KGQA),以及面对需要多次推理步骤的问题时,仍然面临困难。 特别是当涉及到长文本或多文档的处理时,现有的方法往往难以充分利用这些模型的能力来捕捉全局信息,并有效地进行决策。
3/13/2025 12:24:34 PM
Glodma
企业实施RAG过程中:常见误解与澄清,内含项目升级预告
春节之后的一个月的时间内,微信和小红书上数了下大概有 150 多个过来咨询 RAG 在企业落地的网友,一路聊下来按照对方的诉求大概分为三类,第一种是最多的就是年后返工公司领导让落地 RAG,但是一时没有头绪的过来咨询的;第二种是看过我公众号上的相关案例后,想外包给我来做具体实施的;第三种有点出乎意料的是,相关的媒体来交流行业观察的。 第一种类型也是最开始比较多的,最初我也是问啥答啥,但是大概聊了五六个之后发现情况有点不对,大部分其实是比较基础的问题,或者我认为问大模型能比问我更快扫盲的,再加上后来确实肉眼可见的人在变多,我索性和每个人说如果是咨询的话 200 块每小时(现在涨到了 500),这样就大部分人就索性不问了,虽说前后也是有十几个人很干脆的问完问题后直接发了红包,不过不得不说收费确实是个很好的互相筛选。 以上是碎碎念,言归正传,这篇给大家介绍下我目前几个项目实践踩坑过程中总结出的些经验。
3/4/2025 10:53:59 AM
韦东东
一文读懂大模型 RAG:检索、增强与生成的技术详解
大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分领域时,通用大模型往往面临专业知识不足的问题。 相对于成本昂贵的“Post-Training”或“Supervised Fine-Tuning”(监督微调,SFT),基于RAG的技术方案成为了一种更优选择。 本文笔者将从RAG所解决的问题及模拟场景入手,详细总结相关技术细节,与大家分享~一、初识:RAG所解决的问题及模拟场景1.
3/4/2025 9:10:00 AM
小喵学AI
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
AI创作
马斯克
论文
智能体
英伟达
Anthropic
代码
算法
Stable Diffusion
训练
芯片
开发者
蛋白质
腾讯
生成式
苹果
LLM
神经网络
AI新词
Claude
3D
研究
生成
机器学习
AI for Science
Agent
xAI
计算
人形机器人
Sora
AI视频
GPU
AI设计
百度
华为
搜索
大语言模型
工具
场景
字节跳动
具身智能
RAG
大型语言模型
预测
深度学习
伟达
视觉
Transformer
AGI
视频生成
神器推荐
亚马逊
Copilot
DeepMind
模态
架构
LLaMA