MLP
LLM注意力Attention,Q、K、V矩阵通俗理解
QKV的重要性要理解大语言模型效果的底层实现原理,很大一部分就是理解Transformers Block里面的QKV矩阵。 现在前沿的大模型研究工作很大一部分都是围绕着QKV矩阵去做的,比如注意力、量化、低秩压缩等等。 其本质原因是因为QKV权重占比着大语言模型50%以上的权重比例,在推理过程中,QKV存储量还会随着上下文长度的增长而线性增长,计算量也平方增加。
1/13/2025 8:23:07 AM
咚咚呛
LLM为何频频翻车算术题?研究追踪单个神经元,「大脑短路」才是根源
由于缺少对运行逻辑的解释,大模型一向被人称为「黑箱」,但近来的不少研究已能够在单个神经元层面上解释大模型的运行机制。 例如Claude在2023年发表的一项研究,将大模型中大约500个神经元分解成约4000个可解释特征。 而10月28日的一项研究,以算术推理作为典型任务,借鉴类似的研究方法,确定了大模型中的一个模型子集,能解释模型大部分的基本算术逻辑行为。
11/19/2024 12:53:50 PM
新智元
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
论文
英伟达
Anthropic
代码
训练
算法
Stable Diffusion
芯片
蛋白质
开发者
LLM
腾讯
生成式
Claude
苹果
AI新词
Agent
神经网络
AI for Science
3D
机器学习
研究
生成
xAI
人形机器人
AI视频
计算
Sora
GPU
AI设计
百度
华为
工具
大语言模型
搜索
具身智能
场景
RAG
字节跳动
大型语言模型
深度学习
预测
伟达
视觉
Transformer
视频生成
AGI
架构
神器推荐
亚马逊
Copilot
DeepMind
应用
安全