Rule-Based Rewards
RLHF不够用了,OpenAI设计出了新的奖励机制
OpenAI 的新奖励机制,让大模型更听话了。自大模型兴起以来,使用强化学习从人类反馈(RLHF)中微调语言模型一直是确保 AI 准确遵循指令的首选方法。为了确保 AI 系统安全运行并与人类价值观保持一致,我们需要定义期望行为并收集人类反馈来训练「奖励模型」。这种模型通过发出期望的动作来指导 AI。但是,收集这些常规和重复任务的人类反馈通常效率不高。此外,如果安全政策发生变化,已经收集的反馈可能会过时,需要新的数据。我们能否构建一种新的机制来完成这些任务?近日,OpenAI 公布了一种教导 AI 模型遵守安全政策的
7/25/2024 1:47:00 PM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
论文
LLM
代码
算法
芯片
Stable Diffusion
AI for Science
腾讯
苹果
Agent
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
人形机器人
研究
AI视频
生成
百度
大语言模型
Sora
工具
GPU
具身智能
RAG
华为
计算
字节跳动
AI设计
搜索
AGI
大型语言模型
视频生成
场景
深度学习
架构
DeepMind
视觉
预测
Transformer
伟达
编程
生成式AI
AI模型
特斯拉
亚马逊