EVEv2
Encoder-free无编码器多模态大模型EVEv2模型架构、训练方法浅尝
基于视觉编码器的MLLM的基本构成:MLLM通常由预训练的模态编码器、预训练的LLM和一个连接它们的模态接口三个模块组成。 模态编码器(如:CLIP-ViT视觉编码器、Whisper音频编码器等)将原始信息(如图像或音频)压缩成更紧凑的表示。 预训练的LLM则负责理解和推理处理过的信号。
4/28/2025 2:03:00 AM
余俊晖
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
大模型
数据
Midjourney
开源
Meta
智能
微软
用户
AI新词
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
腾讯
Stable Diffusion
Claude
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
研究
AI视频
生成
大语言模型
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
视频生成
场景
深度学习
DeepMind
架构
生成式AI
编程
视觉
Transformer
预测
AI模型
伟达
亚马逊
MCP