数据模型
ByteBrain团队VLDB25 | 面向不完美工作负载的无数据访问基数估计方法
导读本文基于ByteBrain团队实际生产场景,提出一项新的研究问题,即如何在无数据访问条件下,从不完美的查询工作负载中学习一个具备泛化能力与鲁棒性的基数估计模型;同时提出创新技术方案 GRASP (Generalizable and Robust, data-AgnoStic cardinality Prediction) ,借助组合式设计(Compositional Design)解决这一颇具挑战性的问题。 论文目前已经被VLDB25接收。 论文标题:Data-Agnostic Cardinality Learning from Imperfect Workloads论文作者:Peizhi Wu, Rong Kang, Tieying Zhang*, Jianjun Chen, Ryan Marcus, Zachary G.
6/26/2025 9:22:33 AM
ByteBrain
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
Claude
芯片
腾讯
Stable Diffusion
蛋白质
开发者
xAI
具身智能
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
生成式AI
视频生成
场景
DeepMind
特斯拉
深度学习
AI模型
架构
MCP
亚马逊
Transformer
编程
视觉
预测