文化遗产
大模型赋能文化遗产数字化:古籍修复与知识挖掘的技术实践
在文化遗产数字化领域,大模型的核心应用难点在于如何处理古籍中大量的异体字、残缺文本与模糊语义,尤其是面对明清时期的手写残卷,传统的文字识别技术不仅准确率低下,更无法理解古籍中蕴含的历史语境与专业术语。 我在参与某博物馆古籍数字化项目时,首先遭遇的便是大模型对古籍文字的“识别盲区”—初期使用通用大模型识别一本明代医学残卷,发现其将“癥瘕”误判为“症痕”,把“炮制”错解为“泡制”,更无法关联“君臣佐使”等中医方剂配伍逻辑,导致提取的知识完全偏离原意。 为解决这一困境,我没有直接进行模型微调,而是先搭建“古籍文字与语境知识库”:通过整理《说文解字》《康熙字典》等权威字书,以及近现代古籍整理学术成果,构建包含5000 异体字、通假字的对照词典,每个文字标注字形演变、常见语境与释义差异;同时,针对医学、天文、历法等专业领域古籍,收集对应的行业术语库,标注术语的历史用法与现代对应概念(如“勾陈”对应天文领域的“小熊座”)。
10/13/2025 6:10:28 PM
许辉
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
开发者
xAI
具身智能
生成式
神经网络
机器学习
3D
人形机器人
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
计算
字节跳动
AI设计
AGI
大型语言模型
搜索
生成式AI
视频生成
场景
DeepMind
特斯拉
深度学习
AI模型
架构
亚马逊
MCP
Transformer
编程
视觉
预测